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FRAGMENTATION OF A COMPOSITE MATERIAL AND FRAGMENTATION OF 

FIBRES UNDER A DYNAMIC LOAD* 

V.V. KOBELEV 

A simple model is proposed which qualitatively describes the phenomenon 
of the dynamic loading of a fibrous material. The model is based on a 
treatment of the laws of conservation of energy and momentum during the 
fragmentation of a material. A dependence of the sizes of the fragments 
on their shapes, rates of deformation, densities and energies of 
formation of new surfaces is introduced. By fragments, we mean those 
parts of bodies which have been formed during the break up of the 
latter. The fibre fragments of a composite are called splinters. A 
comparison is made with experimental data. 

We shall mention a number of papers on the fragmentation of materials in which 
hypotheses have been introduced concerning the local conservation of energy and momentum. 
Some of the first papers in which the law of conservation of energy was used to represent the 
sizes of the fragments were /l, 2/. It was assumed that the whole of the kinetic energy of 
the material was transformed into energy for the formation of new surfaces during the break 
up of the material. This assumption leads to a substantial reduction in the sizes of the 
fragments, since the fraction of the kinetic energy which is carried away by the 
dispersing splinters was not taken into account. Different models were proposed in 13, 41 
which allow for a reduction in the fraction of the kinetic energy which transforms into the 
kinetic energy of the fragments. Account was also taken of the fact that fragmentation and 
crack propagation take place over a finite time. The problem of coarse fragmentation during 
homogeneous all-round expansion of an unbounded volume was considered in /5/ and it was found 
experimentally that, during the fracture of a material, energy is consumed in the formation 
of new surface, which is equal to the difference between the kinetic energy of the body 
before fragmentation and the energy of the fragments. Experimental confirmations of this 
hypothesis have been presented in /6, 7/ and it has been shown that the fraction of the 
energy which is accumulated due to elastic deformation is relatively small. 

The specific features of the behaviour of composite materials under intense loads have 
been studied starting from /8-12/. It has been established that the principal factor which 
reduces the strength of a composite material in the zone of intense action is a fragmentation 
of the fibres which leads to a state of affairs where the fibres break up into splinters with 
sizes comparable with the critical length /13/. Below, a hypothesis on the energy balance 
during breakdown is put forward in order to describe the process of the breakup of fibres and 
the fragmentation of a composite material. The equations of motion of the fragmented 
material are introduced. The dependence of the size of the fragments on their shape and the 
rate of deformation field is established. 

1. LocaZ enexgyandmomentumconservation zones. We will now formulate the basic hypo- 
theses and derive the equations which describe the fracture of a continuous body by inertial 
forces. Let us visualize a continuous body, the particles of which move at high velocities. 
The velocity field of the particles is inhomogeneous and obeys the equation of continuity. 
Ln certain domains of the body, zones can arise where there are significant tensile stresses. 
The coupling forces between individual particles of the solid block the fracture process, and 
the fragments which are formed after the fracture of the solid therefore have finite 
dimensions. 

An upper estimate of the magnitude of the characteristic size of the fragments can be 
obtained in the following manner /l, 2/. It is assumed that all the kinetic energy of the 
solid is expended in forming new surfaces. It can be shown that this assumption leads to an 
inversely proportional dependence of the sizes of the splinters on the rates of deformation. 

Let us now determine the dependence of the sizes of the fragments on the velocity by 
estimating the fraction of the energy which is carried away by the fragments after the 
breakup of the solid. We will assume that a certain continuous solid Q is decomposed into a 
set of rather small fragments and we will denote a certain typical splinter by o and its 
surface after fragmentation by r. At the instant of time immediately preceding 
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fragmentation, the fragment 0 belongs to the continuous body. Following /14/, we write down 
the laws of conservation of the energy and momentum of the splinter in the form of integral 
identities. We will denote by ox T the four-dimensional volume which describes the motion 
of the fragment o in the space (XI, X,, X8, 07 where X1,X,, and X, are the spatial coordi - 
nates and t is the time. The law of conservation of momentum for an arbitrary 
four-dimensional volume has the form 

dX,dXadX, $ (pu$ - oil) dX,dX,dt -t (puiuz - ui2) dX,dX,di _I- 

(pu+ - CIJ dXldX,dt = 0 

(1.i) 

where p is the density of the material, d (0 x T) is the surface of the four-dimensional 
volume, UC = 111 (XI, X,, X,, t) are the components of the velocity vector of the fragments, and 

011 are the components of the stress tensor. The Latin subscripts take the values 1, 2, and 
3, while summation is carried out over doubly repeating indices from 1 to 3. 

Let R, be the radius vector of the centre of mass of a fragment at the instant pre- 
ceding fracture and let 17~ be the velocity components of the centre of massof the fragment. 
The components of the velocity vector ui at a point with a radius vector R belonging to a 
fragment 0 can be represented in the form of a Taylor's series: 

01 (R) = u, (R,) + z,e,t' (R,) i- . (1.2)> 

where z1 are the components of the vector r=R-RR, and Q' = 11% (%,I + U,,f) are the components 
of the rate of deformation tensor. 

We substitute (1.2) into the integral identity (1.1) and use Gauss's theorem: 

dt dr, drz dz, = (1.3) 

o (zizj) 1 dt dr, drz dss, (dt dX, dXz dX, = dl dz, dzn dz,) 

(0 (.?I) are terms containing derivatives of the components of the vectors Z, of the third 
and higher orders of smallness). Since the fragments are assumed to be fairly small, these 

terms will be neglected. Terms containing the linear forms of z1 are zero: 

SE 
ps,dqd.z,dz,dt = 0, 

since U, are the components of the velocity vector of the centres of mass of the fragments. 
By assuming that p is a constant quantity, we obtain from (1.3): 

aL;, 
p 7 -~ $ (PrJiUj + Sij - Oij)= 0 

Sij = pI ,&e;,:, Iij = $~p~irjd~l dir ds, 

m ==g 
pdz, dq dz3 

(1.4) 

The quantity m is the mass of the fragment, I,, are the components of the moment of 
inertia tensor of the fragment, and S,J is the tensor describing the stresses which arise 
within the fragment and are due to the presence of inertial forces. 

The law of conservation of energy for an arbitrary four-dimensional volume when there 
are no mass forces, internal heat sources and heat transfer has the form /14/ 

where E is the internal energy per unit mass. 
By substituting the series (1.2) into the identity (1.5) and using the equation for the 

momenta (1.4) and the continuity equation au,JaI,=O, we get 

(1.6) 

d / dt = a I at + u,a I al, 
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The left-hand side of this expression is the rate of growth of the sum of the internal 
and kinetic energies per unit volume in the case of a fixed fragment, while the right-hand 
side is the sum of the power of the internal surface forces and the forces of inertia. The 
change in the internal energy on fragmentation is usually associated with the formation of 
new surfaces. In other words, a fraction of the kinetic energy l/s,, becomes accessible 
for transformation into the energy of the formation of new surfaces. 

Let us first consider the case of an isotropic material. The increase in the internal 
energy when a fragment o with a surface are S is formed is equal to yS, where y is the 
surface energy. The change in the internal energy referred to the mass of the fragment m, is 
equal to AE= --yS/m. Let us now assume that the fragmentation occurs instantaneously. In this 
case, the contribution from the operation of internal forces and inertial forces is negligibly 
small and the change in the sum of the internal and kinetic energies during fragmentation 
remains constant, whence 

ys = ; Ilkei,‘eik’ (1.7) 

In the case of anisotropic materials, the surface energy of fracture depends on the 
orientation of the surface. Let us consider the case of an orthotropic body. In an ortho- 
tropic solid the energies of formation of new surfaces with normals which are symmetrical 
about the planes of symmetry are identical. Let a small new surface with an area dS be 
formed within the body. The surface energy depends on the orientation of the unit normal to 
the surface, n, with respect to the triplet of vectors of the normals to the planes of sym- 
metry i,, i, and i3 and is proportional to the area dS: 

dE = y (ak) dS, CQ = n.ik 0.3) 

(q are the components of the vector n in the basis i,,i, and i, and V(Q) is a certain 
function). Hence, the equality which expresses the constancy of the sum of the surface and 
kinetic energies reduces to the form: 

F 
B 

Y (f+) ds = ; I,,ei, pi, (1.9) 

2. Sizes and shapes of the fragments. The determination of the sizes of the fragments 
in the case of isotropic deformation will be the first application of the formulae derived 
in Sect-l. 

Let us consider a thin-walled sphere of thickness h, to the internal surface of which a 
pressure is applied at a certain instant of time. Let the velocity of the particles in the 
radial direction become equal to V. In a spherical system of coordinates, the components of 
the rate of deformation are equal to e,'= e@'= VIR. Let the sphere break up with the 
formation of a number of fragments of regular shape. If the fragments have the shape of 
spherical segments then, for these fragments, IV. = Iss= nL’hi32, and S = xLh, where L is 
the diameter of the segment. 
diameter L, we get 

By substituting this expression into (1.7) and solving for the 

L = c (yRp / (p Vz))“’ (2.1) 

c = 16”~ z 251 

We note that, if the shape of the fragment is taken to be square, the length of a side 
of the square .is determined using (2.1) in which one should put C= 12"~~2,28... . 

The dependences which have been derived therefore enable one to determine the character- 
istic dimensions of the fragments if the material is deformed isotropically. 
the rate of defromation depends on the direction, 

If however, 
the formation of fragments of a regular 

shape whould not be expected. Relationships (1.7)-(1.9) are then inadequate both for deter- 
mining the dimensions as well as the shape of the fragments. 

Let us now study the question of the fragmentation of a thin plate under anisotropic 
deformation. Let E,' and ey' be the principal rates of deformati,on and their directions 
coincide with the x and y axes of a rectangular system of coordinates. We assume that the 
plate breaks up into a number of identical rectangular pieces during fragmentation. The 
directions of the sides of the rectangles are identical to the directions of the principal 
rates of deformation while the dimensions of the sides along the x and y 
and b, respectively. 

axes are equal to a 
We shall take the thickness of the plate as being equal to h. The area 

of the surface of the frament which has been formed is equal to S= 2(a+ b)h while the 
moments of inertia of the broken off chip along the x and y axes are equal to I,,= haab/12 and 
I yy = haba f12. By substituting these quantities into (1.7) and solving the resulting equation 
for the surface area S, we get 
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It can be seen that the surface energy YS depends on the ratio of the sides of the 
rectangles x. Since the sum of the surface and kinetic energies of the fragments is equal 
to the kinetic energy of the body prior to fragmentation, the ratio of the kinetic energy of 
the fragments formed from the body to the kinetic energy of the body prior to fragmentation 
depends on the ratio of the sides r. It follows from (2.2) that, during fragmentation, 
fragments with arbitrary ratios of the sides may appear and, therefore, the laws of conser- 
vation of energy and momentum alone do not enable the shape of the fragments to be deter- 
mined uniquely. 

Physically non-contradictory results can be obtained by invoking additional hypotheses. 
In fact, let us assume that the shape of the fragments which are formed are such that their 
kinetic energy, which is considered as a functional of the shape, is a maximum. When this is 
so, the fraction of the energy used in forming new surfaces will reach a minimum value. 

As applied to the problem under consideration, this proposal reduces to the problem of' 
finding the minimum of the function S(x). It can be shown that it is attained for a ratio 
of the side X* = (h - i)"* [(fi- 1f'a - (l/x+ 1)"*1 + 1. As 1, varies from 0 to T, the magnitude of 
X* falls off monotonically from 3 to 'Is. Hence, if the deformation is close to uniaxial 
(h - 0 or h-m), the size of the fragment in the direction of the deformation axis is 
twice the dimension along the axis in the direction of which the rate of defromation is equal 
to zero. In the case when the body experiences uniaxial deformation along the X axis at a 
rate of deformation e', the area of the surface of the fragments which has been formed is 
calculated using formula (12) in which one should put r= 3,?r= 0. By using the relationship 
b = ~a = S / [Zh (1 + x)1, we find 

a =3c(&)‘s”’ b = c(&)“‘, e = (;)“‘zz ,,21.. . . 

Similar results are also obtained in other cases if it is assumed that fragments with 
regular shapes are formed (hexagonal or elliptical fragments, for example). 

3. The fragmentation of the fibres of a composite mate&at under a high rate of loading. 
We will use the relations which have been derived above to describe the fragmentation of 

the fibres of a composite material under a high rate of loading. It was found in experiments 
on the impact loading of a boron-aluminium composite material that fracturing of the fibres 
and exfoliation of the matrix occurred independently and, in fact, fracture of the fibres 
arose during the passage of a compression shock wave, and these fractures were subsequently 
accompanied by the separation of the matrix layers. It has actually been shown in /lo/ that 
fibre fractures have the greatest effect on the reduction in the strength of composite 
materials under the action of intense loads. 

Let us now compare the dimensions of fibre splinters determined using formula (1.7) and 
those obtained experimentally /lo/. In a series of experiments boron-aluminium samples were 
subjected to the action of a Mylar plate with a thickness of 2.54xlO+m in such a way that the 
pulse duration was 0.2~10~~ The rear surface of the samples was supported on a massive 
aluminium plate which ensured the passage of the compression wave without reflection from the 
end surface. The samples consisted of a packet of orthogonally stacked monolayers. The 
latter were formed by continuous fibres with a thickness d= 1.09x10-"m The boron fibres had 
the following values of the physical constants: density p= 2.58X10*kg/ma, surface energy 
y= 50 J/m', Young's modulus E= 4.21x10"Pa and longitudinal velocity of sound C = 12.1x103 
m/s. The following experimental data /lo/ are also presented: the maximum pressure in the 
shock wave PlDax and the velocity of motion of the impacter (1. 

The following technique is proposed for calculating the dimensions of the splinters. 
The maximum deformation %ax =&ax lE is calculated using the data on the maximum pressure 
in the wave. The deformation increases from zero up to a maximum value e,,, over a time of 
the order of that required for the shock wave to pass through the transverse cross-section 
of the fibre T= d/c= 0.82x 10-8 S. An estimate of the rate of deformation ~'=e,,,/r is 
obtained from this. The use of formula (1.8) yields the estimate 

L =(Zj”’ (3.1) 

for the size of splinter. 
The experimental data and the dimensions of the splinters calculated using these data 

are shown in Table 1. 
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Table 1 

T LXlW, m 

u. km/s pmaxx lo-'Pa 

0.73 
1.39 

I?:: 
1.20 
2.40 

8. x lo- 

x% 
0:33 
0.066 
0.124 
0.327 

Theory Experiment 

1.05 
0.59 
0.35 
1.02 
0.67 
0.35 

0.88f0.4 
- 

0.73zo.4 

Formula (3.1) predicts somewhat lower dimensions for the splinters compared with those 
observed experimentally. This is possibly associated with the existence of other mechanisms 
for the dissipation of kinetic energy, such as viscoelastic deformation, plastic flow of the 
matrix and absorption of energy during the fracture of a fibre- matrix bond. 
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